Few Animals Other than Humans Can Sync with Music...



It started with a sulfur-crested cockatoo named Snowball.

When a colleague showed Aniruddh Patel a YouTube clip of Snowball seemingly dancing to a pop song—the Backstreet Boys' "Everybody"—Patel was shocked. Not only was the bird dancing to the music, but it also appeared to be moving perfectly in sync with the beat, a skill Patel thought only humans could master.

"At the time, it seemed like we might be the only species with this response to music, which is striking, since it doesn't seem like a complicated behavior," says Patel, an associate professor of psychology in the School of Arts and Sciences and an expert in the burgeoning field of music neurobiology.




Patel contacted the owner, who, as luck would have it, was a scientist herself. Together, they ran Snowball through a series of dance routines, slowing down and speeding up the song by up to 20 percent, and watching the bird's response. At nine out of 11 different speeds, the bird matched the beat. "It turned out to be the first demonstration that another animal could feel the beat of music and move its body to it," says Patel.

It was a case of the exception proving the rule—the vast majority of animals just don't seem to have the cognitive capacity to anticipate a beat and move to it.

"Across biology, there are rhythms everywhere, so it's a reasonable intuition that they would be deeply ingrained in behavior," says Patel. From frogs croaking to fireflies flashing, many animals engage in rhythmic patterns to mark territory or attract mates.


That's what Charles Darwin thought, too. Writing about the evolution of music in The Descent of Man, he speculated that music by humans taps into brain circuits deeply rooted in evolution and widely spread across the animal kingdom. But Patel challenges that assumption in a new paper titled "The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong?", arguing that the ability to move in synchrony with a beat may be almost as rare, evolutionarily speaking, as language.

Close observations of animals and insects that produce rhythmic behaviors in synchrony with each other—such as certain species of fireflies—have found that they can only synchronize within a very limited range of tempos, unlike people.

Read more on this unique study here...